1. Phương Trình:Phương trình ẩn
là mệnh đề chứa biến có dang:
trong đó
và
là các biểu thức của
.
được gọi là vế trái,
được gọi là vế phải của phương trình
.
Số thực
được gọi là nghiệm của phương trình
nếu
.
Giải phương trình là việc tìm tất cả các nghiệm của phương trình
.
Nếu phương trình
không có nghiaamj ta nói phương trình
vô nghiệm (Tập nghiệm là tập rỗng).
Điều kiện của phương trình: Là tập số thực
thỏa mãn các biểu thức
và
có nghĩa.
Hai phương trình tương đương là hai phương trình có cùng tập nghiệm.
Các phép biến đổi tương đương:Cộng hay trừ hai vế của phương trình cho cùng một biểu thức hoặc cùng một số mà không làm thay đổi điều kiện của phương trình.
Nhân hay chia hai vế của phương trình với cùng một số khác
hoặc một biểu thức khác
mà không làm thay đổi điều kiện của phương trình.
Cho phương trình
và phương trình
. Nếu tập nghiệm của phương trình
là tập con của tập nghiệm của phương trình
thì phương trình
được gọi là phương trình hệ quả của phương trình
.
2. Phương trình bậc nhât:Dạng: .
Nếu thì phương trình
luôn có nghiệm duy nhất
.
Nếu thì phương trình
có vô số nghiệm (vô định).
Nếu và
thì phương trình
vô nghiệm.
3. Phương trình bậc hai:Dạng: Biệt thức Delta: Nếu thì phương trình
có hai nghiệm phân biệt:
và
.
Nếu thì phương trình
có hai nghiệm trùng nhau (nghiệm kép)
.
Nếu thì phương trình
vô nghiệm.
Chú ý: Nếu phương trình
có hệ số
thì ta có thể dùng biệt thức Delta thu gọn:
Nếu thì phương trình
có hai nghiệm
và
.
Nếu thì phương trình
có hai nghiệm trùng nhau
.
Nếu thì phương trình
vô nghiệm.
3. Định lí Vi-Et:Nếu phương trình bậc hai
có hai nghiệm
và
thì:
và
.
Ngược lại, nếu hai số
và
có tổng
và tích
thì
và
là nghiệm của phương trình:
.
Chú ý: Điều kiện để tồn tại hai số
thỏa mãn bài toán ngược là:
.
4. Các phương trình quy về bậc nhất và bậc hai thường gặp:a) Phương trình chứa ẩn trong dấu giá trị tuyệt đối:Dạng 1: .
Áp dụng định nghĩa giá trị tuyệt đối của một số hoặc một biểu thức ta có các cách biến đổi để đưa phương trình về dạng thông thường như sau:
Hoặc
Ta cũng có thể chia khoảng để đưa về các phương trình thông thường sau khi xét điều kiện
hoặc xét riêng từng trường hợp
và
.
Dạng 2: Phương trình
có thể biến đổi về việc tìm nghiệm của hai phương trình sau:
Hoặc
Sau khi giải hai phương trình mới này ta lấy hợp hai tập nghiệm thì ta có tập nghiệm của phương trình
Một cách khác, phương trình
. Giải phương trình này ta có tập nghiệm của phương trình
.
b) Phương trình chứa ẩn dưới dấu căn bậc hai:Dạng: Điều kiện của phương trình:
Phương trình
và ta có thể giải phương trình mới này với điều kiện đã cho ở trên.
Tương tự đối với phương trình dạng
.
5. Phương trình và hệ phương trình bậc nhất nhiều ẩn:a) Phương trình bậc nhất hai ẩn:Dạng: với điều kiện
.
Nghiệm của phương trình là một cặp số
thỏa mãn phương trình.
Ta có thể chứng minh được phương trình
luôn có vô số nghiệm và biểu diễn mỗi nghiệm bằng một điểm có tọa độ
trên mặt phẳng tọa độ thì biểu diễn tập nghiệm của phương trình
là một đường thẳng.
b) Hệ hai phương trình bậc nhất hai ẩn:Dang: Cách giải: Phương pháp thế: Rút một ẩn từ một phương trình theo ẩn kia rồi thế vào phương trình còn lại.
Phương pháp cộng đại số: Nhân hai vế của một phương trình với một số phù hợp rồi cộng phương trình mới với phương trình ban đầu để triệt tiêu một ẩn.
Phương pháp dùng định thức cấp hai:Nếu thì hệ có nghiệm duy nhất :
Nếu thì hệ có vô số nghiệm (vô định).
Nếu và
hoặc
thì hệ vô nghiệm.
c) Hệ ba phương trình bậc nhất ba ẩn:Dạng: Dùng phép biến đổi đưa hệ về dạng chéo:
Sau đó dùng phương pháp thế để tìm ra các ẩn
.
Chú ý: Trong quá trình biến đổi, ta có thể rút gọn dần theo các ẩn, có thể để lại bất kì ẩn nào trong phương trình chỉ còn một ẩn (vai trò của ba ẩn
là như nhau).
Ta cũng có thể dùng phương pháp định thức cấp ba để giải hệ này nhưng có nhược điểm là khó nhớ cách tính định thức cấp ba.
6. Bài toán giải bằng cách lập hệ phương trình:Trong các bài toán giải bằng cách lập hệ phương trình cần chú ý đặt ẩn phù hợp với các yếu tố cần tìm, đặc biệt lưu ý đến điều kiện của ẩn sau khi đặt ẩn để có thể tìm ra nghiệm của bài toán một cách chính xác.